Worksheet \# 26: The Fundamental Theorem of Calculus and Net Change

1. (a) State both parts of the Fundamental Theorem of Calculus using complete sentences.
(b) Consider the function $f(x)$ on $[1, \infty)$ defined by $f(x)=\int_{1}^{x} \sqrt{t^{5}-1} d t$. Find the derivative of f. Explain why the function f is increasing.
(c) Find the derivative of the function $g(x)=\int_{1}^{x^{3}} \sqrt{t^{5}-1} d t$ on $(1, \infty)$.
2. Use Part 2 of the Fundamental Theorem of Calculus to evaluate the following integrals or explain why the theorem does not apply:
(a) $\int_{-2}^{5} 6 x d x$
(c) $\int_{-1}^{1} e^{u+1} d u$
(b) $\int_{-2}^{7} \frac{1}{x^{5}} d x$
(d) $\int_{\frac{\pi}{3}}^{\frac{\pi}{6}} \frac{\sin (2 x)}{\sin (x)} d x$
3. Find each of the following indefinite integrals.
(a) $\int 7 x-2 d x$
(c) $\int e^{u+2} d u$
(b) $\int \frac{1}{x^{78}} d x$
4. A population of rabbits at time t increases at a rate of $40-12 t+3 t^{2}$ rabbits per year where t is measured in years. Find the population after 8 years if there are 10 rabbits at $t=0$.
5. Suppose the velocity of a particle traveling along the x-axis is given by $v(t)=3 t^{2}+8 t+15 \mathrm{~m} / \mathrm{s}$ at time t seconds. The particle is initially located 5 meters left of the origin. How far does the particle travel from $t=2$ seconds to $t=3$ seconds? After 3 seconds, where is the particle with respect to the origin?
6. Suppose an object traveling in a straight line has a velocity function given by $v(t)=t^{2}-8 t+15 \mathrm{~km} / \mathrm{hr}$. Find the displacement and distance traveled by the object from $t=2$ to $t=4$ hours.
7. (a) An oil storage tank ruptures and oil leaks from the tank at a rate of $r(t)=100 e^{t}$ liters per minute. How much oil leaks out during the first hour?
(b) Is this model realistic? In other words, is it realistic to use this function $r(t)$ to model the leak rate in this situation? Why or why not?
8. Recognize each of the sums as a Riemann sum, express the limit as an integral and use the Fundamental Theorem to evaluate the limit.
(a) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{\sqrt{3+\frac{i}{n}}}{n}$
(b) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} 2 \frac{\left(2+\frac{2 i}{n}\right)^{2}}{n}$

MathExcel Worksheet \# 26: FTC and the Net Change Theorem

9. Evaluate the following:
(a) $\int_{e^{a}}^{e^{b}} \frac{1}{t} d t$
(b) $\int_{0}^{x}-5 t^{4}+\frac{1}{5 t+4} d t$
(c) $\frac{d}{d x} \int_{0}^{x}-5 t^{4}+\frac{1}{5 t+4} d t$
10. Suppose $f(t)$ is a continuous function and suppose that

$$
\int_{0}^{x} f(t) d t=x e^{2 x}+\int_{0}^{x} e^{-t} f(t) d t
$$

Determine $f(t)$. Hint: Differentiate both sides.
11. Conisder the following:

$$
\int_{-3}^{2} \frac{1}{x^{2}} d x=-\left.x^{-1}\right|_{-3} ^{2}=\left(-\frac{1}{2}\right)-\left(-\frac{1}{-3}\right)=-\frac{1}{2}-\frac{1}{3}=\frac{-5}{6}
$$

What is wrong with this calculation?
12. Evaluate the following integrals by interpreting them as geometric areas.
(a) $\int_{-7}^{7} \sqrt{49-x^{2}} d x$
(b) $\int_{-7}^{12}|x+2| d x$
(c) $\int_{4}^{15} f(x) d x$ where $f(x)= \begin{cases}x & x \leq 9 \\ 12 & 9<x<13 \\ -x+15 & 13 \leq x\end{cases}$

